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Probabilistic Estimates for the Two-Dimensional
Stochastic Navier�Stokes Equations
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We consider the Navier�Stokes equation on a two-dimensional torus with a
random force, white noise in time, and analytic in space, for arbitrary Reynolds
number R. We prove probabilistic estimates for the long-time behavior of the
solutions that imply bounds for the dissipation scale and energy spectrum as
R � �.
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1. INTRODUCTION

In two dimensions global existence and uniqueness of solutions of the
Navier�Stokes equation is known for a large class of initial conditions and
forcing, deterministic and random. In particular, for a bounded domain the
unforced system has a finite dimensional attractor(1, 2) and this persists for
a bounded finite dimensional force.

In this paper we consider the Navier�Stokes equation with a random
force, white noise in time and large scale in space and prove probabilistic
estimates for the long time behaviour of the solutions. Our analysis is
inspired by the recent paper by Mattingly and Sinai(6) who gave a concep-
tually simple proof of analyticity of the solutions of the 2D Navier�Stokes
equation. We extend their analysis to the random case.

We consider the stochastic Navier�Stokes equation for the velocity
field U(t, x) defined on the torus TL=(R�2?LZ)2:

dU+((U } {) U&&{2U+{p) dt=d F (1)

743

0022-4715�00�0800-0743�18.00�0 � 2000 Plenum Publishing Corporation

1 UCL, FYMA, B-1348, Louvain-la-Neuve, Belgium.
2 Helsinki University, Department of Mathematics, Helsinki 00014, Finland.



where F(t, x) is a Wiener process with covariance

EF:(s, x) F;(t, y)=min[s, t] C:; \x&y
L + (2)

and C:; is a smooth function defined on the unit torus and satisfying
�: C:;=0. Equation (2) represents large scale forcing, the scale being the
size of the box. Equation (1) is supplemented with the incompressibility
condition { } U=0={ } F and we will also assume the vanishing averages
over the torus: �TL

U(0, x)=0=�TL
F(t, x) which imply that �TL

U(t, x)=0
for all times t.

(1) implies the transport equation for the vorticity 0=�1U2&�2U1 :

d0+((U } {) 0&&{20) dt=dG (3)

where G=�1F2&�2F1 has the covariance

EG(t, x) G(s, y)=L&2 min[s, t] 1 \x&y
L +

with 1=&2 tr C.
It is convenient to change to dimensionless variables s.t. & and L

become one. This is achieved by setting

U(t, x)=
&
L

u \ &
L2 t,

1
L

x+ , 0(t, x)=
&

L2 | \ &
L2 t,

1
L

x+
Then u and | live on the unit torus and satisfy (1) and (3) with & and L
replaced by 1, and C and 1 replaced by

c=
L4

&3 C, #=
L4

&3 1

Going to the Fourier transform |k (t)=(2?)&2 �T1
eik } x|(t, x) dx with

k # Z2 we may write the enstrophy equation as

d|k =\&k2|k + :
l # Z2"[0, k]

(k_l) |l |&2 |k&l |l+ dt+dfk (4)

where k_l=k1 l2&l1k2 and [ fk ] are Brownian motions with f� k = f&k

and

Efk (s) fl (t)=min[s, t] $k, &l#k

and we have used the relation uk =i[(&k2 , k1)�k2] |k .

744 Bricmont et al.



The dimensionless control parameter is the | injection rate,

R=
1
2

:
k # Z2

#k =
1
2

#(0)=
1
2

L4

&3 1 (0)

which is proportional to the third power of the Reynolds number Re=
L4�3=1�3&&1 (== 1

2 tr C(0) is the energy injection rate) in our model. We will
be interested in the turbulent region R � �; therefore, for convenience, we
will always assume below that R>1. We make the following assumption
on the noise covariance:

#k�C Re&|k| (5)

The coefficient of |k| could be different from 1, but we require exponential
decay. The physically relevant case is the one with #k {0 only for a finite
number of k with |k| of the order of unity.

To state our main result, define the enstrophy

8= 1
2 :

k

||k |2 (6)

and fix numbers r>1, :>1+r. Consider, for positive D, the norm

&|&D=sup
k

||k | |k| r eD&: |k| (7)

D will vary below, but r and : are fixed. The factor |k| r is useful technically
(and was already used in ref. 6).

Theorem. Let &|(0)&D0
�D:

0<� and 8(0)=K<�. Then, there
exists a random function Dt , Dt<� for all t, such that with probability 1,
&|(t)&Dt

<D:
t . For any t>C(log D0+log K ), and for D2>CR log R, with

R>1,

Prob[&|(t)&D�D: 6 8(t)�D2]�1&Ce&c(D2�R) (8)

Remark. Here and below, C (and c) are sufficiently large (small)
constants, which may vary from place to place but that are uniformly
bounded as R � �. The theorem says that with probability one |(t, x) is
analytic for all times, the dissipation scale is (up to a logarithm) >R&(1�2) :

and the energy spectrum

e(k)#k&1 |
S1

d k� E ||k� k |2�CR:~ k&(2r+1)
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with k=|k|, where r can be taken arbitrary close to 1 and :~ arbitrary close
to 1+r. These bounds hold for any fixed time and also for the average of
these quantities over any fixed time interval. For example, using Jensen's
and Chebyshev's inequalities, one derives from (8)

Prob { 1
T |

t+T

t
||k (s)| 2 ds>D2:k&2re&2D&:k=�Ce&c(D2�R)

Equation (8) also implies that all correlation functions of the type

E `
i

{ni |(t, xi )

exist. This entered as an assumption in ref. 11, and was used there to derive
some physical consequences concerning 2D turbulence.

Let us close this section with two comments. The first concerns the
relationship of our model to the standard 2D turbulence picture.(3, 4) One
considers (1) in infinite volume with the forcing as we do at spatial scale L,
but not periodic, rather, for instance, having a smooth Fourier transform
with compact support around L&1. Then it is expected that a stationary
state for 0 emerges for which the energy spectrum e(k)=k&1 �S1 d k� � dx_
eikk } xE0(x) 0(0) has two scaling regimes

e(k) B {k&3

k&5�3

'&1>>k>>L&1

k<<L&1 = (9)

refered to as the direct (enstrophy) cascade regime and the inverse (energy)
cascade regime respectively. The scale ' is the ``viscous scale'' beyond which
the e(k) decays more rapidly and it scales like &1�2. In particular, the total
energy density ��

0 e(k) dk is infinite in the stationary state. This means that
starting with say vanishing u at time zero, the energy density increases
linearly with time and for the ensuing stationary state only the vorticity
remains a well defined random field. One can also work in finite volume
like in this paper by forcing the system in an intermediate scale '<<l<<L,
provided the energy is absorbed by friction acting on the |k|tL&1 regime.
This indeed is what one does in experimental(8) and numerical(9)

approaches.
In our case the absence of the friction forces the energy to dissipate in

the short scales too and the spectrum should be different from (9). Our
bound above is certainly far from realistic, but one would expect the e(k)
to diverge as R � �. It would be very interesting to get hold of the direct
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and inverse cascade regimes, but certainly much more sophisticated ideas
are needed than what are used in the present paper.

The second comment concerns the uniqueness of the stationary state
(the existence is standard and follows from compactness and Lemma 1
below). In the case of Gaussian noise like as we have there are two kinds
of results in the literature regarding uniqueness. In ref. 5 one proves
uniqueness, provided the noise is taken big enough in the ultraviolet, i.e.,
the #k are taken to have a lower bound k&: for : sufficiently small. This
assures that ergodicity results from the action of the noise. However, such
a noise is not what one is interested in the turbulence problem. The second
result(7) is for a smooth noise but viscosity large enough, i.e., in the nontur-
bulent regime. Then the Laplacean is the dominant term in Eq. (1) and the
past is forgotten exponentially fast due to the viscous damping.

In the turbulent regime of large R, the number N of modes |k that are
not explicitely damped by viscosity goes to infinity as R � � (we get an
upper bound CR: for N ). Nevertheless, in the absence of noise, the
enstrophy and thus |(t) tends to zero and this dissipativity should lead to
uniqueness of the stationary state provided the noise is nonvanishing for
these N modes. In the case of bounded noise, kicked at discrete times,
uniqueness has been recently proven by Kuksin and Shirikyan.(10) For a
uniqueness result in the case of Gaussian noise, analytic in space, also
kicked at discrete times, see ref. 12.

From the physical point of view, the rate of convergence to the
stationary state that could be obtained solely due to the effect of the noise
would not be realistic. As R � �, the relaxation time due to this
mechanism would grow faster than any power of R while in actual fact
relaxation to stationarity should be due to the nonlinearity and should be
much faster.

2. TRANSITION PROBABILITIES

Define the region

UD=[| | &|&D�D: and 8�D2] (10)

Then the basic proposition is

Proposition. Suppose |(0) # UD . Then there are positive constants
A and a, independent of R, such that

Prob[|(t) # U- 2e&t D , \t, 0�t�1]�1&AR2:e&a(D2�R) (11)
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It has a rather immediate

Corollary. Suppose |(0) # UD and D$>D. Then

Prob[|(t) � U- 2e&t D$ , for some t # [0, 1]]�AR2:e&a(D$2�R) (12)

Proof. Note that for D<D$, UD/UD$ . Thus |(0) # UD$ . Now the
proposition implies the claim. K

Proof of the Theorem. Consider the Markov chain with transition
probabilities

p(|, U )=Prob[|(1) # U | |(0)=|] (13)

Let, for n�0, Un=UDn
where D2

n=2a&1R( 1
2 e)n and define

pm, n= sup
| # Um

p(|, U c
n) (14)

Since, by definition, - 2e&1 Dm�Dn , for m�n+1, the corollary implies

pm, n�A$e&((1�2) e)n#A$?n (15)

for m�n+1 and D2
n>CR log R (so that R2:e&a(D2

n �2R)�C$, and we can
take A$=C$A).

By assumption, |(0) # UN for any N<� such that D0 in the theorem
is less than DN . Let pn(t)#Prob[|(t) # U c

n]. Then

pn(t+1)�Prob[|(t) # Un+1] pn+1, n+ pn+1(t)�pn+1, n+ pn+1(t) (16)

Suppose, inductively in t # N, that

pn(t)�B?n (17)

for n�N&t. Then, for n�N&t&1, (16), (15) and (17) yield

pn(t+1)�A$?n+B?n+1=B?n

provided we take B=A$(1&e&((1�2) e))&1 (for t=0, (17) holds for any
B�0). This completes the induction and shows that, with probability one,
|(t) # Un , for some n, for all integer times. Moreover, since (17) holds for
all n when t�N=C(log D0+log K ), this finishes the proof of the theorem
for integer times. The remaining times follow from the corollary. K

748 Bricmont et al.



3. ENSTROPHY BOUNDS

We prove a probabilistic analogue of the enstrophy balance:

Lemma 1. Given 8(0), for any t # [0, 1],

Prob[8(t)�D2]�Ce&(c�R)(e tD2&8(0))

Proof. Let x(t)=2*(t) 8(t)=*(t) �k ||k |2. Then by Ito's formula
(recall that �k #k =2R and thus that #k �2R, \k):

d
dt

E[ex]=E _\*4 *&1x&2* :
k

k2 ||k|2+* :
k

#k+2*2 :
k

#k ||k| 2+ ex&
�E[((*4 *&1&2+4*R) x+2*R) ex]

where E denotes the expectation taken over the fk 's. We used the Navier�
Stokes equation (3), |k|�1, and the fact that that the nonlinear term does
not contribute. Take now *(t)=(1�8R) e(t&1) so that *4 *&1=1, *4 *&1&2+
4*R�& 1

2 and 2*R� 1
4 . So,

d
dt

E[ex]�E _\1
4

&
1
2

x+ ex&�
1
2

&
1
4

E[ex]

where the last inequality follows by using (1&2x) ex�2&ex. Thus,
Gronwall's inequality implies that:

E[ex(t)]�e&t�4ex(0)+2�3ex(0)

i,e.,

E _exp \ c
R

8(t) et+&�3 exp \ c
R

8(0)+
with c=e&1�4 which yields the claim by Chebycheff 's inequality. K

This implies immediately the

Corollary. Let D(t)#e(&1�2) t with D2=8(0), and let t1 ,..., tN #
[0, 1]. Then

Prob[8(tn)� 3
2 D(tn)2, \n=1,..., N ]�1&CNe&c(D2�R) (18)
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4. PROOF OF THE PROPOSITION

As usual, the stochastic equation (3) is defined by the integral equation,

|k(t)=e&tk2|k(0)+|
t

0
ds e(s&t) k2

:
l # Z2"[0, k]

(k_l) |l |&2 |k&l(s) |l (s)+zk(t)
(19)

where zk is an Ornstein�Uhlenbeck process, i.e., Gaussian with mean zero
and covariance

Ezk (t) zl (s)=$k, &l

1
2k2 (e&(t&s) k2

&e&(t+s) k2
) #k

Our strategy to prove the proposition is the following. We fix a short
timestep { depending on D. By the corollary of the previous section the
enstrophy can be assumed to satisfy the required bounds at discrete times
tn=n{. On the interval [0, {] we prove an existence and uniqueness result
for (19) in Lemma 3 by imposing a suitable condition on the smallness of
the noise term z. At this point, the bound for &|(t)&D(t) will not improve
as claimed in the proposition. However the enstrophy stays bounded and
this information allows (Lemma 4) to improve the &|(t)&D(t) -bound.
Repeating Lemmas 3 and 4 on intervals [tn , tn+1] the proposition follows.

Let

{=$D&4:

where $ will be chosen below (see after (29)), independently on D. We need
the following standard result on the Ornstein�Uhlenbeck process:

Lemma 2. \k # Z2, Prob[supt # [0, {] |zk (t)|�B{1�2]�Ce&(c�R) e|k| B2
.

This has the following simple consequence. Let AD be the event

[z | \k # Z2, sup
t # [0, {]

|zk (t)|�{1�2 De&|k|�4] (20)

then Lemma 2 implies

Prob AD�1&Ce&c(D2�R) (21)

We now prove two lemmas. The first one, as we explained above,
shows that the solution exists and that the solution satisfies the bounds of

750 Bricmont et al.



the proposition over a short time interval. For this, let YD be the Banach
space equiped with the norm & }&D and

XD=[| # C0([0, {], YD) | &|&# sup
t # [0, {]

&|(t)&D(t)<�] (22)

where

D(t)=e&(1�2) tD

Then we have,

Lemma 3. Let z # AD and suppose that &|(0)&D�D: and that
8(0)� 3

2 D2. Then the solution exists in XD and moreover,

&|(t)&- 2 D(t)�(- 2 D(t)):, 8(t)�2D(t)2

for t # [0, {].

The second lemma improves on these bounds:

Lemma 4. Let z # AD and suppose that &|(0)&D�D: and that
8(t)�2D(t)2 for t # [0, {]. Then &|({)&D({)�D({):.

Proof of the Proposition. Let tn=n{. By the corollary in the pre-
vious section (18), we may assume that 8(tn)� 3

2 D(tn)2, for all n=1,..., N,
where N=$&1D4:&1 with probability

1&CD4:e&c(D2�R) (23)

We can thus repeat Lemmas 3 and 4 on intervals [tn , tn+1], each time
with probability (21). Hence, with probability bounded from below by
(23) we deduce that &|(t)&- 2 D(t)�(- 2 D(t)): and 8(t)�2D(t)2 for all
t # [0, 1], i.e., we have |(t) # U- 2e&t D as required. By changing c and C,
we can bound D4:�R2: in (23) by the exponential, call a and A the new
constants and obtain the claim of the proposition. K

Proof of Lemma 3. Write Eq. (19) as

|=F(|) (24)

where

Fk (v)#|0
k (t)+|

t

0
ds e(s&t) k2

:
l # Z2"[0, k]

(k_l ) |l |&2 vk&l (s) v l (s)

#|0
k (t)+Nk (v)(t) (25)
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and |0(t) equals:

|0
k (t)#e&t k2|k (0)+zk (t) (26)

Using (20) and zk (0)=0, which imply (trivially) that &z&�D:, and

e&t k2e&D&: |k|�e&D(t)&: |k| (27)

which holds for t # [0, {], we have

&|0&�2D: (28)

We prove now that F is a contraction in the ball

B=[v # XD : &v&|0&�1] (29)

provided the $ in {=$D&4: is taken small enough (independently of D).
To show that F maps B into itself, let v # B. Then &v&�2D:+1, i.e.,

|vk (t)|�(2D:+1) e&D(t)&: |k| |k|&r (30)

We must prove that

|Fk (v)&|0
k (t)|=|Nk (v)(t)|�e&D(t)&: |k| |k|&r (31)

\k # Z2 and \t # [0, {]. Inserting (30) and |k_l | |l |&2�|k| |l |&1 in the
second term of (25), we get:

|Nk (v)(t)|�(2D:+1)2 |
t

0
ds e (s&t) k2

:
l # Z2"[0, k]

e&D(s)&: |k&l | e&D(s)&: |l |

_|k&l |&r |l |&r&1 |k| (32)

Then, using the bound

:
l # Z2"[0, k]

|k&l |&r |l |&r&1�C |k|&r (33)

(since r>1), the triangle inequality &|k&l |&|l |�&|k| and

1
2 (s&t) k2�(e(1�2) :s&e (1�2) :t) |k| D&:=(D(s)&:&D(t)&:) |k| (34)
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which holds for 0�s�t�1 and D large enough, one gets that

|Nk (v)(t)|�(2D:+1)2 |k| C |k|&r e&D(t)&: |k| |
t

0
ds e(1�2)(s&t) k2

=(2D:+1)2 C |k|&r e&D(t)&: |k| 2 |k|&1 (1&e&(1�2) tk2
) (35)

Since |k|&1 (1&e&(1�2) tk2
)�t1�2�$1�2D&2: (31) follows for $ small enough

(but independent of D). The contractive property is proven similarily.
Combining the fact that the solution is contained in the ball (29) and

the inequality 2D:+1�(- 2 e&t�2D):=(- 2 D(t)): (which holds, since
:>2, for t # [0, {] and D large enough) we obtain,

&|(t)&- 2 D(t)�&|(t)&D(t)�(- 2 D(t)): (36)

for t # [0, {] and D large enough.
To conclude we need to prove that 8(t)�2D(t)2. By (24), (25),

8(t)= 1
2 &|(t)&2

2� 1
2(&|0(t)&2+&N(|)(t)&2)2 (37)

By (20) and zk (0)=0, the L2-norm of z(t) is bounded by C{1�2D=
C$1�2D1&2:, the L2-norm of the first term in (26) is bounded by &|(0)&�
- 28(0)�- 3 D and, using (31), the L2-norm of N(|)(t) is bounded by
(�k # Z2 "[0] |k|&2r)1�2=C (since r>1). Thus, we obtain the claim provided
D is large enough. K

Proof of Lemma 4. We note first that 8({)�2D({)2 implies

||k ({)|�- 2 D({)�D({): e&D({)&: |k| |k|&r (38)

provided |k|�D ;, :>1+r; and D is large enough. Hence, we only need
to consider |k|>D ;. Below, we take as ; any number strictly larger than 1.

We can now conclude the proof of the lemma by using the following
bound on the nonlinear term of the Navier�Stokes equation, which
improves (35) for k large enough:

Lemma 5. \k such that |k|�D ;, and \t # [0, {],

|Nk (|)(t)|�c(1&e&(1�2) tk2
) D:e&D(t)&: |k| |k| &r (39)

where c can be taken small if D is large enough.

Returning to the proof of Lemma 4, we have to prove the following
bound:

||k ({)|�e&(1�2) :{ D:e&D({)&: |k| |k| &r (40)
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We shall use (25), (26) and bound each term. Using &|(0)&D�D: and

e&(1�2) {k2e&D&: |k|�e&D({)&: |k| (41)

which is similar to (27), we get,

|e&{k2|k (0)|�e&(1�2) {k2D:e&D({)&: |k| |k|&r (42)

For zk ({), use (20), zk (0)=0, and

e&|k|�8�e&D({)&: |k| |k|&r (43)

for |k| large, to get

|zk ({)|�{1�2De&|k|�8e&D({)&: |k| |k|&r (44)

Finally, we use (39) to bound Nk (|)({). Combining (42), (44), (39), we
obtain (40) using

e&(1�2) {k2
+c(1&e&(1�2) {k2

)+{1�2D1&:e&|k|�8�e&(1�2) :{ (45)

Since {=$D&4:, this last estimate holds for c small, |k|�D ;, and D large
enough.

Proof of Lemma 5. Consider first the case D ;�|k|�AD:, where
A is a large enough constant (chosen below). We bound |k_l | |l |&2�
|k| |l |&1 and split the sum in (25) into

\ :
0{|l |�( |k|�2)

+ :
l{k, |l | >( |k|�2)

+ ||k&l (s)| ||l (s)| |k| |l |&1#71+72 (46)

In the first sum, we bound, using Lemma 3,

||k&l (s)|�CD: |k&l |&r�CD: |k| &r

since |k&l |� 1
2 |k|. Also, from Lemma 3

&|(s)&2=- 2 8(s)1�2�2D(s) (47)

so Schwartz' inequality yields

:
0{|l |�(|k|�2)

||l(s)| |l | &1�2D(s) \ :
0{|l |�( |k|�2)

|l |&2+
1�2

�CD(log |k| )1�2 (48)

754 Bricmont et al.



Combining these two bounds we get

71�CD |k| (log |k| )1�2 D: |k|&r (49)

For the second sum, we use ||l (s)|�CD: |l |&r, together with (47)
and Schwartz' inequality to bound it by

72�CD |k| D: \ :
l{k, |l |>( |k|�2)

|l |&2(r+1)+
1�2

�CD |k| D: |k|&r (50)

Inserting (49) and (50) to Nk (|)(t) and performing the integral over time
we get the bound

|Nk (|)(t)|�CD |k|&1 (log |k| )1�2 (1&e&t k2
) D: |k| &r

�CeCAD1&;(log D)1�2 (1&e&(1�2) t k2
) D:e&D(t)&: |k| |k| &r (51)

where we used D ;�|k|�AD: and

1�e&D(t)&: |k|eCA

which holds since |k|�AD:. The claim of the lemma follows, for D ;�|k|
�AD:, since D is assumed to be large enough and we choose ;>1.

Consider now the case |k|>AD:. Using the bound (35), we get

|Nk (|)(t)|�C |k|&1 (1&e&(1�2) tk2
) D2:e&D(t)&: |k| |k|&r

�c(1&e&(1�2) tk2
) D:e&D(t)&: |k| |k| &r (52)

by choosing A large enough (thus, we first choose A large so that (52)
holds with c small enough for (45) to be true and then we choose D large
so that the RHS of (51) is bounded by the RHS of (39) with c small
enough). K
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